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Abstract

The gut-brain-axis refers to the bidirectional communication between the enteric nervous system and the central nervous system. Mounting evidence supports the
premise that the intestinal microbiota plays a pivotal role in its function and has led to the more common and perhaps more accurate term gut-microbiota-brain axis.
Numerous studies have identified associations between an altered microbiome and neuroimmune and neuroinflammatory diseases. In most cases, it is unknown if these
associations are cause or effect; notwithstanding, maintaining or restoring homeostasis of the microbiota may represent future opportunities when treating or preventing
these diseases. In recent years, several studies have identified the diet as a primary contributing factor in shaping the composition of the gut microbiota, and in turn, the
mucosal and systemic immune systems. In this review, we will discuss the potential opportunities and challenges with respect to modifying and shaping the microbiota
through diet and nutrition in order to treat or prevent neuroimmune and neuroinflammatory disease.
© 2018 Elsevier Inc. All rights reserved.
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1. Introduction

The human body is an ecosystem supporting trillions of microor-
ganisms that live primarily, although not exclusively, within the
gastrointestinal track [1]. For many years, it was widely believed the
microbiota was mostly comprised of commensal bacteria that do not
harm the host nor necessarily impart any significant health benefit. A
notable exception to this point of viewwas based on observations that
commensal bacteria compete with pathogenic species for nutrients
and sites for colonization and, therefore, a compromised gut
microbiota can lead to pathogenic intestinal infection [2]. For instance,
the colonization of the gut by the bacteria Clostridium difficile can
occur as a result of reduced microbiota competition during the course
of long-term antibiotic therapy. In fact, the treatment of C. difficile
infection by fecal transplantation is an excellent example where
manipulating the gut microbiota has a direct and verifiable benefit for
treating human disease [3].

In contrast to the aforementioned example, a perturbedmicrobiota
may occur as a result of a disease process. For instance, gastrointestinal
(GI)-associated CD4 T cells are the primary targets of infection by the
human immunodeficiency virus (HIV) [4]. Alterations in mucosal
immunity, including bacterial translocation, and subsequent chronic
systemic inflammation are common and associate with HIV progres-
sion [5,6]. Furthermore, components of this pathological process
persist, despite viral suppression during highly active antiretroviral
therapy (HAART) [7–9].

Previous studies have reported significant differences in the gut
microbiome of HIV cases when compared to controls. Shifts in
bacterial populations toward those with proinflammatory potential,
such as Staphylococcus spp., Pseudomonas spp., and Enterobacteriaceae
family members are commonly reported [10,11]. In fact, increased
Prevotella in the stool of HIV-infected individuals has been reported
by several groups [12–14]. Vujkovic-Cvijin and coworkers observed
that a dysbiotic mucosal-adherent bacterial population, enriched in
Proteobacteria and depleted of Bacteroidia members, was associated
with markers of mucosal immune disruption, as well as T cell
activation, and chronic inflammation in HIV-infected subjects [15].
They additionally reported an up-regulation of kynurenine pathway
components. The kynurenine pathway, also knownas the indoleamine
2,3-dioxygenase (IDO), pathway contributes to metabolic immune
regulation by catabolizing the essential amino acid L-tryptophan and
has been associated with inflammation, neurodegenerative diseases,
anddepression. Importantly, someof products of this pathway, such as
quinolinic acid, are neurotoxic and have been associated neurological
pathology in HIV infection [16].

With respect to C. difficile infection, the benefit of modifying the
microbiota through fecal transplantation is fairly straightforward. In
the case of HIV-infection, the situation is less obvious, although early
studies suggest that altering the microbiota may influence systemic
immune responses. Hensley-McBain et al. showed that macaques
infected with simian immunodeficiency virus (SIV), the animal model
of HIV infection, displayed significant increases in the number of
peripheral Th17 and Th22 cells and reduced CD4 T cell activation in GI
tissues after receiving antibiotics, followed by fecal transplantation.
However, others reported that human subjects with HIV infection
showed no significant change, post-fecal transplantation [17]. Albeit,
the authors acknowledge that, unlike the macaques in the Hensley-
McBain et al. study, the human subjects were not preconditionedwith
antibiotics, so depleting the previous microbiota may be in important
step prior to microbiota transplantation.

At this time, all aspects of altering the microbiota are not fully
understood in most cases. However, as our understanding improves
with respect to the contributions of specific bacterial groups, rational
modification of the microbiota may ultimately become an effective
way of modifying diseases associated with an altered microbiota.

2. The gut-microbiota-brain axis

Most neuroimmune diseases are characterized by a spectrum of
symptoms and the pathophysiology of these diseases cannot typically
be defined by an individual organ or system (such as neurological);
instead, amore systemic point of viewmust be considered. Indeed, it is
increasingly evident that the gut microbiota dramatically influences
systemic immunity, including the host’s neuroimmune status, both
beneficially and adversely. The so-called “gut-microbiota-brain” axis
dictates that biochemical signaling occurs between the enteric
nervous system (ENS) of the GI tract and the central nervous system
(CNS) and principally involves the intestinal microbiota [18]. This
signaling can occur directly via the vagus nerve or indirectly, through
chemical signals that are released into the periphery and act in an
endocrine manner (Fig. 1) [19–22].

When an imbalance of the gut microbiota occurs and results in an
increase in noncommensal microbes (dysbiosis), homeostasis of the
gut microbiota is disrupted. Signaling between the gut-brain axis is



Fig. 1. Representation of the bidirectional communication between the gut-microbiota-brain axis. Signaling can occur directly via the vagus nerve, through signaling molecules such as
GABA (γ-Aminobutyric acid), serotonin (5-hydroxytryptamine, 5-HT) and anti-inflammatory cytokines. Conversely, signaling can occur indirectly, through chemical messengers that
are released into the periphery and act in an endocrinemanner including GABA, 5-HT, produced by enterochromaffin cells (ECC) and short chain fatty acids (SCFA), such as butyrate and
propionate, produced through bacterial fermentation of nondigestible fiber.
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also impacted, potentially leading to neurological and neuroimmune
abnormalities. Indeed, dysbiosis is commonly associated with a compro-
mised gut epithelium and the subsequent bacterial translocation may
result in systemic inflammationand innate immuneactivation suchas the
up-regulation of interleukin-1 (IL-1), IL-6, and tumor necrosis factor-
alpha (TNF-α) [23,24]. Furthermore, it is important to appreciate that
systemic inflammation can promote neuroinflammation across the
blood-brain barrier. In point of fact, it has been shown that a single
intraperitoneal injection of TNF-α in mice increased serum and brain
levels of the proinflammatory cytokines TNF-α, IL-6, and MCP-1, in a
dose- and time-dependent manner [25].

3. Gut microbiota and neurotrophic factors

Biogenic amines such as catecholamines (CA), which include
epinephrine (adrenaline), norepinephrine (noradrenaline), and dopa-
mine, as well as other neuroactive amines like gamma-aminobutyric acid
(GABA) and serotonin (5-hydroxytryptamine, 5-HT) [26–29] interact
with several host systems to maintain homeostasis [26,27]. Strikingly,
over 90% of the body’s 5-HT is produced in the gut, and through the
engagement of at least 14 different receptor subtypes [30],modulates the
digestive system [31], the nervous system [32], the immune system [33],
and cardiac function [34]. Using an animal model, Yano and coworkers
showed that the gut microbiota significantly contributes to the level of
colon and blood 5-HT, primarily through elevating its synthesis by host
colonic enterochromaffin cells [35]. Furthermore, utilizing specific
pathogen-free mice, germ-free mice, and gnotobiotic mice, Asano et
al. showed that CA levels in the gut lumenwere lower in germ-freemice
than in specific pathogen-free mice and, moreover, CA levels correlated
with Clostridium-associated β-glucuronidase activity [29], directly
implicating a specific genus of bacteria. Although it is widely accepted
that dopamine levels are primarily synthetized in the CNS, a study in
rats showed evidence that the gut lumen also contributes to dopamine
production to some extent [29]. Another study showed that adminis-
tering Lactobacillus to germ-freemice not only increased the levels of 5-
HT, but significantly increased the level of dopamine in the striatum,
raising the possibility of using bacterial transplants for the treatment of
Parkinson’s disease (PD) [36]. Also, enzymes that regulate dopamine
synthesis can bemodulated by gut microbiota through the microbiota-
gut-brain axis [37].
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In addition to the host’s production of biogenic amines, which may
occur as a result of host-bacterial interactions, it has been reported that a
number of gut-associated bacteria have the capacity to directly produce
these signaling molecules. For example, Pessione et al. reported that
Lactobacillus spp. and Enterococcus produce and release histamine and
tyramine into the intestinal lumen [38]. Also, Escherichia coli and Pseu-
domonas have been reported to produce endogenous GABA [39] and Bi-
fidobacteria has been reported to produce melatonin [40].
4. The gut microbiota, mucosal immunity, and neuroinflammation

Our current understanding supports the premise that the micro-
biota plays a pivotal role inmaintainingmucosal immune competence
and GI integrity. Indeed, previous studies show that animals who
develop under germ-free conditions display extensive deficits in the
development of the gut-associated lymphoid tissues (GALT), suggest-
ing that commensal bacteria are important, not only for maintaining
gastrointestinal health, but are also critical for the proper develop-
ment of mucosal immunity. Several observations support the premise
that the microbiota can influence the inflammatory state of intestinal
epithelium and, in turn, its integrity. For instance, Bacteroides fragilis
as well as some members of the genus Clostridia promote an anti-
inflammatory state through the production of anti-inflammatory
cytokines, such as IL-10 and IL-13, while some pathogenic bacteria,
including Salmonella typhimurium and C. difficile, drive the production
of inflammatory cytokines [41,42].

The innate immune system senses microorganisms of the gut,
primarily through their interaction with pattern recognition recep-
tors, and their engagement by bacterial products is essential for
maintaining intestinal homeostasis [43–45]. The structural constitu-
ents of bacterial cell walls persistently stimulate the innate immune
system to produce inflammatory cytokines, thus generating a basal
state of low-level immune activation that originates at the intestinal
mucosal surface and affects the entire body [46]. To this end, a
compromised gut epithelium and the subsequent bacterial transloca-
tion exacerbates this process, resulting in greater systemic inflamma-
tion and innate immune activation including the up-regulation of
inflammatory cytokines [23,24]. The up-regulation of these inflam-
matory mediators can promote pathological responses including
sickness behavior, neurocognitive dysfunction, sleep abnormalities,
and chronic fatigue [47,48].

In addition to the previous examples that largely rely on innate
immune responses, cell-mediated immunity is also influenced by the
gut microbiota. Notably, the majority of Th1 and Th17 cells reside in
the small intestine and differentiate as a result of signals associated
with the gutmicrobiota [49,50]. Failure tomaintain the proper balance
of these T cells leads to increased bacterial translocation and innate
immune activation [51,52]. Importantly, current estimates suggest
that more than 60% of all T-cells reside within the small intestine [53]
underscoring the potential contribution of the gut to systemic
immunity. Therefore, a compromised gut may have a profound and
complex influence on the host’s neuroimmune system.

Alterations in gut microbiota can also indirectly affect mucosal
immunity by adversely dysregulating energy homeostasis and
promoting oxidative stress. For instance, hydrogen sulfide (H2S),
which is produced during the course of anaerobic respiration by
bacteria such as Prevotella, is associated with mitochondrial dysfunc-
tion, epithelial damage, and increased intestinal inflammation [54,55].
Furthermore, elevated lactic acid production from bacteria such as
Enterococcus and Streptococcus spp. can also contribute to GI pathology
by promoting mitochondrial dysfunction and enhance oxidative
stress. These examples are but a few of the putative mechanisms
whereby the microbiota impacts neuroimmune and neuroinflamma-
tory processes.
It is important to bear in mind that the composition of the gut
microbiota is influenced by a combination of factors including
genetics, diet, antibiotic use, and disease, all of which may act in
concert and these factors will need to be considered [56,57].
Additionally, most investigations into the composition of disease-
associated microbiomes have relied on 16S ribosomal analysis, which
primarily identify families of bacteria, but few studies have conducted
a comprehensive survey at the species level. In one of the few
instances, Li and coworkers conducted a comprehensive survey by
combining 249 newly sequenced samples from the Metagenomics of
the Human Intestinal Tract project with 1,018 previously sequenced
samples to create a cohort from three continents and concluded that
almost 10 million unique bacterial genes are potentially represented
[58]. These data emphasize the potential diversity of the human
microbiota and challenges that lay ahead with respect to understand-
ing the contributions of specific bacterial species. However, as our
knowledge increases as to the contributions of each species, with
respect to neuroimmune and neuroinflammatory diseases, the
rational modulation of the intestinal microbiota will ultimately be
within our grasp.

5. Neuroimmune and neuroinflammatory diseases associated
with alterations of the gut microbiota

5.1. Parkinson's disease

Parkinson’s disease (PD) is a devastating, neurodegenerative
disorder characterized by the progressive degeneration of axons that
project from midbrain dopamine neurons to the striatum. Patholog-
ically, PD is characterized by an accumulation of intracellular, protein
aggregates termed “Lewy bodies” in midbrain dopamine neurons. The
progressive loss of midbrain dopamine neurons leads to the onset of
clinical symptoms, including the presence of tremors and bradykine-
sia. Additionally, the loss of posture/balance and the onset of dementia
are observed in late-stage PD.

PD is also characterized by the presence of non-motor symptoms.
In fact, it is generally accepted that the majority of individuals who
sufferwith PD also suffer fromgastrointestinal comorbidities, ofwhich
constipation is considered the most prominent [59]. Specifically, PD
cases show signs of gastrointestinal dysmotility including delayed
gastric emptying and constipation. Indeed, approximately 50% of PD
cases suffer from severe constipation and show comorbidity with
bowel-related disorders including Crohn’s disease and inflammatory
bowel syndrome. Additionally, constipation can occur 20 years before
the onset of motor symptoms in PD. These observations suggest that
constipation represent an early pathological event that precedes the
onset of neurological and motor symptoms in PD by 10-15 years. As
previouslymentioned, the gut lumen can contribute to the production
of dopamine [29]. Therefore, given the observation that the ENS
produces some level of dopamine and that PD symptoms are caused by
a reduction in dopamine, it is conceivable that gut pathology observed
in themajority of PD cases is amajor risk factor that can exacerbate the
depletion of dopamine and worsen PD neuropathology.

PD cases show altered gut homeostasis including increased
oxidative stress which contributes to barrier and intestinal perme-
ability, leading to a leaky gut and systemic low-grade inflammation
[60–62]. While the pathophysiological mechanisms that contribute to
altered gut homeostasis in PD are not known, mounting evidence
suggest that early alterations in the microbiome are associated with
constipation and gut-related disorders. Consistentwith thismodel, Lai
et al. reported that a diagnosis of IBS is associated with an increase in
risk of PD [63,64]. Other studies have shown that PD cases presentwith
altered microbiomes including an over-abundance of a number of
bacterial groups, including Bacteroidetes, Lactobacillaceae, Faecali-
bacterium prausnitzii, Enterococcaceae, [65] Prevotella, [65,66] and
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Clostridium spp. [67]. Moreover, there is strong evidence that the
microbiota is altered early during the course of disease. One recent
study showed that the prevalence of Bifidobacterium and Bacteroides
fragilis is decreased, along with an increase in Lactobacilli gasseri and
Enterobacteriaceae [66,67]. Notably, alterations in the gutmicrobiome
in PD cases are significantly associated with worsened PD-associated
symptoms [68].

Although it is not known if an altered microbiota is the initiating
factor of PD, a major drive of etiology or consequence of disease
progression, there is some evidence that suggests an altered gut
microbiome contributes to PD pathophysiology. Importantly, there is
convincing evidence of strong interactions between the ENS and the
CNS via a brain-gut/enteric axis in PD. Like the brain, significant
accumulation of Lewy bodies has been observed in the ENS of PD cases
suggesting that the aberrant accumulation of protein aggregates
contributes toneurodegeneration of theENS andgut pathology [69]which
predates the PD symptoms by 10 to 20 years [70]. Furthermore, fecal
transplantation studies have compellingly shown that an altered
microbiota contributes to PD symptoms. Strikingly, transplanting micro-
biota from six PD cases worsened the motor symptoms in α-synuclein
expressing mice [71]. Conversely, depleting the gut microbiota in this
transgenic PDmousemodel ameliorated the symptomsof PD, reduced the
aggregation of Lewy bodies in the CNS, and reversed constipation. Finally,
an altered microbiome in PD may contribute to an increase in oxidative
stress caused by overactive macrophages, which lead to increase wall
permeability and enhances the aggregation of α-synuclein and in an in
vivo chemical model of PD [69,72,73]. Overall, this data suggests causation
between altered gut microbiome and PD symptoms.

To date, little is known about the molecular causes of altered gut
homeostasis in PD. A reduction in the level of neurotrophins, including
brain-derived neurotrophic factor (BDNF), may contribute to deregu-
lated gut homeostasis and constipation in PD based on the following
evidence. BDNF is one of the most abundant neurotrophins produced
in the gut to support normal brain development, neuronal survival and
the differentiation of midbrain dopamine neurons [74]. Furthermore,
BDNF can exert strong anti-inflammatory processes in models of
immune-graft rejection, allergy and experimental meningitis models
suggesting that BDNF can regulate the immune system. [75–77]. Based
on studies performed in postmortem brain tissue, midbrain dopamine
neurons in PD show a significant reduction in neurotrophic factors
such as BDNF and of the BDNF receptor TrkB [78–80] suggesting that a
decrease in BDNF reduces neuronal survival and increases the
susceptibility of dopamine neurons to oxidative stress.

A proper level of BDNF is critical for the expression and proper
function of the N-methyl-D-aspartate (NMDA) receptor in the CNS
and ENS [81]. Given that a low level of BDNF in the CNS and the ENS in
PD has beenwell-documented, it has been postulated that a reduction
in the level of membrane-bound NMDA receptor may contribute to
alterations in gut homeostasis and changes in CNS function, via
affecting the kynurenine pathway [81]. Furthermore, as the gut
microbiomeproduces a significant level of BDNF to support normal gut
function [81], these data suggest that a low BDNF level plays a pivotal
role in neurodegeneration of dopamine neurons in the CNS and ENS,
gut pathology and inflammation in PD.

Finally, there is experimental evidence that suggest that supplemen-
tation of exogenous recombinant human BDNF, or of compounds that
increase BDNF levels, may ameliorate constipation, oxidative stress and
clinical symptoms in PD. For instance, Vidal-Martinez et al. showed that
transgenic mice that overexpress mutant α-synuclein (A53T), a genetic
model of PD, shows decreased gut motility compared to wild-type mice
whereas treating mice with AN121, an antagonist of the BDNF receptor,
reversed the ameliorative effects of BDNF on constipation [82]. Overall,
these data suggest that low levels of BDNF and a decline in BDNF-
mediated signaling contributes to gut pathology and subsequent
neurodegeneration of dopamine neurons in PD.
5.2. Myalgic encephalomyelitis

Many chronic diseases are characterized by systemic immune
activation, gastrointestinal issues and neurocognitive abnormalities.
One such example, myalgic encephalomyelitis (ME), is a heteroge-
neous disorder often identified by incapacitating post-exertional
fatigue, not relieved by rest, accompanied by neurological symptoms
(e.g. brain fog, modest brain atrophy, and gradual decline in cognitive
function), and inflammatory sequelae [83]. GI abnormalities are also
commonly reported by those with ME, and, in fact, are so prevalent
and their symptoms overlap with irritable bowel syndrome (IBS) to
such an extent that many individuals diagnosed with ME report that
they received a previous diagnosis of IBS [84]. This assertion is
supported by studies conducted by Maes and coworkers, who
reported that a majority of subjects with ME (59.6% vs. 17.7%)
experienced GI symptoms and that these symptoms strongly
associated with a diagnosis of IBS [85].

Consistent with a GI involvement in the pathophysiology of ME,
several studies have reported alterations of the ME microbiota and
microbiome. For instance, using culture- and metabolomic-based
analyses, Sheedy and colleagues reported significantly increased
proportions of D-lactic acid-producing Enterococcus and Streptococ-
cus spp. in fecal samples of subjectswithME [86]. Recently,Wallis et al.
conducted a systematic literature review to examine similarities
between ME and acute D-Lactic acidosis and concluded that high
levels of D-lactate may play a role in the neurological comorbidity in
ME [87]. However, as there have not been any robust clinical studies to
evaluate the circulating levels of D-lactate in ME subjects, the
contribution of D-lactate in the neurological comorbidity of ME
remains to be established.

In the first published metagenomics analysis of an ME cohort,
Fremont et al. observed that subjects withME displayed an overall gut
microbiome that is different from non-ME subjects when geograph-
ically controlled [88]. In this study, stool from ME cases and controls
from Belgium and Norway were analyzed by pyrosequencing, which
revealed that Belgian cases and controls differed, as did Norwegian
cases and controls. Interestingly, Belgian and Norwegian ME cases
differed from each other, as did Belgian and Norwegian controls. Not
only does this study articulate an association between ME and
alterations in the gut microbiome, these data emphasize the potential
for geographic differences as well as disease differences when
investigating disease associations with an altered microbiome.
Variations in the gut microbiota of ME cases were later confirmed by
Giloteaux and colleagues, who showed that ME is characterized by
dysbiosis, bacterial translocation and an altered microbiome, and
additionally reported that overall bacterial diversity was lower in the
ME cases when compared to controls. In particular, they observed
large reduction in the relative abundance and diversity of members of
the Firmicute phylum.

In a later study, it was revealed by Nagy-Szakal and coworkers that
ME cases without IBS can be differentiated from those with IBS based
on their microbiome profile [89]. Specifically, ME cases with IBS were
identified by an increase of unclassified Alistipes and decreased Fae-
calibacterium whereas increased unclassified Bacteroides abundance
and decreased Bacteroides vulgatus were more prevalent in ME cases
without IBS. It was also revealed that the severity of symptoms such as
pain, fatigue, and reduced motivation were correlated with the
abundance of specific bacterial taxa [89]. When taken together,
these studies strongly imply that an altered microbiome profile is
common among those with ME and, additionally, may differentiate
specific subgroups.

Although not all individual with ME report GI comorbidity,
previous research suggests that gut pathology may not be a requisite
for alterations in the microbiota. For example, Shaukla and colleagues
observed differences in gut and plasma microbiome following an
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exercise challenge that was not recapitulated in controls subjects [90].
Interestingly, as previously indicated, on average, the composition of
microbiome of those with ME is reported to be less diverse; however,
following exercise challenge, an increase in relative abundance of six
of the nine major bacterial phyla/genera was observed in ME cases
compared to only two of the nine in controls. Previous studies in
animal models [91,92] as well as humans [93], suggest that exercise is
associated with increased microbiota diversity, as well as an
expansion of beneficial bacteria, such as butyrate-producing species.
However, the increased microbiota diversity observed in ME subjects
was observed concurrently with an increase in bacterial products in
the blood, suggesting bacterial translocation is associated with
strenuous exercise inME. Although, it is yet to be determinedwhether
or not the increased bacterial diversity induced by exercise is
beneficial or pathological for those with ME [94]. Further studies
will be required to determine if the bacterial translocation and
potentially associated systemic inflammation observed during stren-
uous exercise in ME contributes to the manifestation of exercise
intolerance; however, this study does introduce the intriguing
possibility of a connection between the gut microbiota, intestinal
integrity and systemic inflammation observed in ME.

5.3. Schizophrenia

The role of the human microbiome in schizophrenia is largely
undiscovered, but many argue that it’s an endeavor worth pursuing
[95]. Currently there are limited published studies involving the fecal
and orophyngeal microbiome in those with schizophrenia. One such
oropharyngeal investigation using metagenomic analysis (16 adults
with schizophrenia, 16 non-psychiatric controls) found differences at
both the phylum and the genus levels. Samples from subjects with
schizophrenia had less overall diversity of species compared to
controls, and an increased number of metabolic pathways represent-
ing metabolite transport systems, including siderophores (iron-
chelating compounds secreted by microorganisms such as bacteria
and fungi), glutamate and vitamin B12; this is in contrast to
carbohydrate, lipid pathways and energy metabolism which were
abundant in controls [96]. Another study of the oropharyngeal
microbiome (41 adults with schizophrenia, 33 non-psychiatric
controls) assessed bacteriophages (viruses that infect bacteria and
alter their metabolism) and found that the Lactobacillus phage phi adh
was significantly more abundant in schizophrenia cases than in
controls [97].

One small study that used fecal samples to investigate the role of
the gut microbiome in first episode psychosis (FEP) (28 cases, 16
controls) reported an elevation of the Lactobacillus group and a
positive correlation with the severity of psychotic symptoms in
multiple domains. Differences in the microbiota were also associated
with poorer treatment response in one FEP subgroup [98]. Another
case-control study looked at exposures to fungal members of the gut
microbiome, including the yeast species, Candida albicans. Severance
et al. investigated antifungal IgG antibody responses of participants
with bipolar disorder (n=270) and schizophrenia (n=261) revealing
sex-specific differences; C. albicans seropositivity conferred increased
odds for a schizophrenia diagnosis in males, while C. albicans seroposi-
tivity in femaleswas associatedwith higher odds of cognitive impairment
(lower cognitive scores) [99]. In a follow-up, 56 of the outpatients with
schizophrenia were enrolled in a longitudinal, double-blind, placebo-
controlled study, showing sex-specific effects; probiotic treatment
significantly reduced levels of C. albicans antibodies over the 14-week
study period in males, but not in females [100].

The maternal immune activation (MIA) mouse model mimics
neurodevelopmental disorders such as autism or schizophrenia by
administering immune stimulants [such as the endotoxin lipopoly-
saccharide (LPS), mimicking a bacterial infection, or the double-
stranded RNA molecule, polyinosinic:polycytidylic acid (poly I:C),
mimicking a viral infection] to the pregnantmouse to induce behavior
change in the offspring. This model is based on the theory that it is not
the infectious agent, but rather the maternal immune activation that
causes the behavior change in the offspring. The gutmicrobiome likely
plays a pivotal role in theMIAmodel, as offspring have gastrointestinal
abnormalities and altered microbiota, similar to humans with autism
and schizophrenia [101]. Additionally, one promising MIA study gave
the probiotic Bacteriodes fragilis to MIA offspring, and by doing so,
corrected their intestinal permeability deficits and reversed some of
their behaviors (communicative, stereotypic, anxiety-like and senso-
rimotor); however, social deficits persisted. After B. fragilis treatment,
two serum metabolites normalized, 4-ethylphenylsulfate (4EPS) and
indolepyruvate; notably, 4EPS is structurally similar to p-cresol, the
putative autism spectrum disorders (ASD) biomarker, and indolepyr-
uvate is theorized to be a metabolic byproduct of gut bacteria [101]. A
recent MIA mouse study demonstrated that IL-6 in the placenta
activates inflammatory signals to influence fetal brain development
and behavior [102].

5.4. Autism spectrum disorders

As with other neurological disorders, such as PD and Alzheimer’s
disease (AD), ASD are exceedingly comorbid with GI symptoms such
as constipation, bloating and diarrhea, and several previous studies
have reported that ASD often associate with an altered intestinal
microbiome [103]. For instance, Finedgold et al. reported that the
number of Clostridial species found in the stool samples of children
with ASD was greater than in the stool samples of control children
[104]. Also, Tomova and coworkers reported that microbiomes of
children with ASD exhibit a significant decrease in the Bacteroidetes/
Firmicutes ratio and an elevation in the amount of Lactobacillus species
as well as the Desulfovibrio species when compared to siblings and
healthy controls [105].

Although the precise mechanism connecting the microbiota to the
neuropathology of ASD is not fully elucidated, recent studies by
Golubeva et al. support that social behavior deficits in the BTBR T
+Itpr3tf/J mouse model of ASD are associated with microbiota-
related alterations in bile acid and tryptophan metabolism [106].
Particularly, they observed that tissue levels of 5-HTwere decreased in
the small and large intestine of BTBR mice by 50% when compared to
control mice. Furthermore, this decrease coincided with decreased
tryptophan hydroxylase 1 (Tph1) transcription and increased trans-
porter (Sert) transcription. These observations were associated with
GI distress, intestinal permeability, and changes in ENS morphology.

A recent clinical trial was conducted by Kang and coworkers to
investigate the potential benefits of fecal transplantation in autistic
children [107]. After a two-week pretreatment with antibiotics to
deplete the existing microbiota, subjects were treated with an initial
bolus of transplant bacteria, followed by a lower daily maintenance
dose for seven to eight weeks. Upon completion of the treatment, a
significant improvement in gastrointestinal symptoms was observed,
including constipation, diarrhea, indigestion, and abdominal pain.
They additionally reported that behavioral symptoms, as indicated
using the PGI-II assessment, showed significant improvements which
were maintained at 8 weeks post-treatment. Finally, microbiome
pyrosequencing confirmed that the donor transplant was partially
maintained as well as beneficial changes in the gut environment.

In order to explore the possibility that microbiome-driven
behavioral changes are accompanied by corresponding changes in
neurological tissue, Ong et al. utilizeddiffusion tensor imaging to show
that over-all changes inwhitematter structural integrity occurred in a
diet-dependent manner [108]. They further reported that the changes
in diet were accompanied by changed in the microbiome. These
studies provide compelling evidence that modifying the microbiota
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through diet, may represent an effective strategy to treat neurological
pathology; however, it should be pointed out that other investigators
have reported subjectswith AD are also characterized by alterations in
their oral microbiome, raising the possibility that more than just the
gut microbiota may be involved in these observations [109].

5.5. Multiple sclerosis

Multiple sclerosis (MS) is a severely debilitating autoimmune
disease, characterized by chronic inflammation of the CNS, leading to
demyelination. Although the etiology of MS is presently unknown,
genetics and environmental factors are thought to play an important
role [110,111]. In addition to a host of neurological symptoms,
individuals with MS commonly experience GI aberrations [112]. In
fact, a survey-based study revealed that approximately two thirds of
individuals with MS reported GI complaints that persist for at least
six months, which include diarrhea, constipation, and fecal
incontinence [113].

Several previous studies have reported that subjects with MS have
an altered microbiome when compared to age- and gender-matched
controls [114–116]. For instance, Miyake and coworkers conducted a
longitudinal study to compare the gut microbiota of Japanese subject
with relapsing-remitting MS (RRMS) to that of healthy controls and
observed that 21 species of bacteria exhibited significant changes in
relative abundance in addition to observing an overall moderate
dysbiosis in the RRMS cohort. However, in contrast to other disease,
such as inflammatory bowel disorders, which show reduced diversity
[117,118], they reported that RRMS cases displayed similar bacterial
diversity to that of controls.

Perhaps the most compelling evidence for a microbiota-MS
connection arise from observations conducted using the classical MS
mouse model, experimental autoimmune encephalomyelitis (EAE).
Lee and colleagues reported that intestinal microbiota significantly
influence the balance between proinflammatory and anti-
inflammatory and immune responses during the induction of EAE
[119]. Specifically, they observed that mice, reared under germ-free
conditions developed an attenuated form of EAE characterized by
decreased levels of the proinflammatory cytokines IL-17A and IFN-γ in
the intestine and spinal cord with an concomitant increase in CD4
+CD25+Foxp3+ regulatory T cells (Tregs). The authors of this study
additionally showed that specific pathogen-free mice that harbor
segmented filamentous bacteria fully developed EAE, thus providing
compelling evidence that the bacterial composition of the gut can
influence neurologic inflammation in MS.

Subsequent to this study, Haghikia and coworkers showed that long-
chain fatty acids (LCFAs) promote polarization of naive T cells toward a
Th1 and Th17 differentiation and impaired their intestinal sequestration
via the p38-MAPK signaling pathway. In contrast, EAE mice treated with
short-chain fatty acids (SCFAs) displayed increased differentiation and
proliferation of Tregs, and an accompanying resolution of EAE pathology.
It is noteworthy that microbiome survey studies of other neuroimmune
disease such as ME [120] and autoimmune diseases, such as Crohn’s
disease [121], are characterized by reduced levels of butyrate-producing
bacteria. These data suggest that rationally modifying the gut microbiota
through diet, in order to promote the growth and maintenance of SCFA-
producing bacterial, represents a potential strategy for treating neuroin-
flammatory disease.

5.6. Alzheimer’s disease

Alzheimer’s disease is the most common neurodegenerative
disorder and is typically associated with a toxic buildup of β-
amyloid plaques and hyperphosphorylated and misfolded tau protein
in the brain [122]. As with PD cases, recent evidence suggest that
alterations in themicrobiome of thosewith ADmaybe associatedwith
or contribute to the pathophysiology of AD [123]. Recently, Minter et
al. reported that antibiotic treatment of a murine model of AD lead to
reduced amyloidosis [124]. Subsequent to this study, Kobayashi and
colleagues reported that oral administration of Bifidobacterium breve
strain A1 to a mouse model of AD (intracerebroventricularly
administered Aβ25-35) resulted in reversal of cognitive impairment
[125]. This study raises the possibility that an altered microbiome
contributes to the neuropathological progression in AD. The authors of
this study additionally reported that transcriptional profiling of the
hippocampus revealed that a total of 305 genes (247 up-regulated, 58
down-regulated) were differentially expressed in the AD animal
model when compared to non-AD mice and that most of the
differentially expressed genes were involved in immune response.
Strikingly, upon treatment with B. breve A, the transcriptional profiles
ADmice differed fromnon-ADmice by only twogenes, suggesting that
B. breve A couldmodulate excessive AD-associated immune responses
and underscores the relevance of the altered microbiome the
progression of AD pathology.

Recently, an association between an altered microbiome and the
presentation of AD was demonstrated in human subjects by Vogt and
coworkers [126]. In this report, it was showed that the gutmicrobiome
of AD cases contains less microbial diversity and was compositionally
distinct from age- and sex-matched controls. It has also been shown
that a significant reduction in BDNF and of neuroprotective signaling is
observed in postmortem brain tissue as well as in vivo models of AD
and this has been suggested to contribute to the overt and progressive
neurodegeneration of hippocampal neurons [127]. In light of recent
evidence showing that BDNF levels are regulated by the gut
microbiome and the neuroprotective role of BDNF, it would be
relevant to understandwhether the alteredmicrobiota in AD cases can
contribute to a reduction of BDNF, and thereby, exacerbate AD
neuropathology. As mentioned in the PD section, a reduction in
BDNF can also exacerbate oxidative stress and alter gut homeostasis in
AD cases. In addition to supporting a role for the microbiota in the
pathophysiology of AD, these murine and human studies suggest that
the progression and presentation of AD may be modified through the
modification of the microbiota. Nonetheless, it has been suggested
that pathology of AD commences as early as 20 years prior to the
manifestation of overt symptoms [128]; therefore, in light of this
protracted prodromal phase, modifying AD progression after symp-
toms are manifest may prove to be impractical. It is possible that the
greatest opportunities in modifying the microbiota will be in the
proactive prevention of AD for those with a hereditary predisposition.

6. Modifying the microbiota through the use of prebiotics and
probiotics

6.1. Prebiotics

Modulation of the microbiota is an evolving strategy as a part of
comprehensive approach to lifestyle wellness [129]. The diverse
ecosystem that the microbial organisms inhabit in the gut allow for
potential targets tomaintain or improvehealth aswell as treat disease.
Advances in microbiome research utilizing high-throughput RNA
sequencing has improved our knowledge of the composition of the
microbiota and the substances that influence their colonizing abilities.
Therefore, thesemethods can be used as a prognostic tool to follow the
effects of dietary interventions on the composition of these microbial
populations in a longitudinal manner [130,131]. Prebiotics, are a class
of compounds that has been recognized for their ability to manipulate
the host’s microbiota. Whereas probiotics are live microorganisms,
prebiotics are nonviable substrates that serve as nutrients for
beneficial microorganisms harbored by the host. It is important to
note that prebiotics differ from most dietary fibers such as pectins,
cellulose and xylans, which encourage growth of a wide variety of gut
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microorganisms. A prebiotic is more specific in that it is not broadly
metabolized, but elicits a metabolism biased towards health-
promoting microorganisms within the indigenous ecosystem. Simp-
son and Campbell provide a comprehensive review of microbiota
interaction and compare studies on fiber and prebiotics [130].

The first prebiotics assessed in humans and used commercially
stimulated Lactobacillus and Bifidobacterium but not pathogens such
as Clostridium or Escherichia [132]. In 2004, the definition of prebiotics
was altered to “selectively fermented ingredients that allow specific
changes, both in composition and/or activity in the gastrointestinal
microflora that confers benefits upon host well-being and health”
[131]. It is important to note that the prebiotic is selectively utilized by
microorganisms and can lead to an overall health benefit for the host.
However, if additional microorganisms that have pathogenic effects
have enhanced function or growth and lead to a negative consequence
for the host then this substrate can no longer be called a prebiotic. This
distinction makes it important to determine both function and
composition of the gut microbiota involved. Furthermore, prebiotics
should not cause gas formation, unfavorable changes in bowel habits,
or any type of negative symptom for the human host [133].

There are many fermentable carbohydrates that have a prebiotic
effect, but the dietary prebioticsmost extensively documented to have
health benefits in humans are the non-digestible oligosaccharides
fructans and galactans, which are preferentially utilized by Bifidobac-
teria [133,134]. In contrast to many other genera of bacteria, Bifido-
bacteria have the β-fructanosidase and β-galactosidase enzymes
necessary to digest the linkage bonds in fructan and galactan
oligosaccharides as well as the transport machinery to necessary
capture and deliver the substrates into their cytoplasm.

Interestingly, the first oligosaccharides identified to have prebiotic
effects and positively impact gastrointestinal health are present in
human milk. Human milk oligosaccharides are particularly important
for the development of the newborn baby’s intestinal microbiota and
metabolic and immunologic systems, which have consequences for
health in early development as well as later in life. Human milk
oligosaccharides, after fucosylation and sialylation, prevents adhesion
of pathogens to the neonate’s intestinal epithelium by a competitive
mechanism which infers protection from infection [129,135,136].

Ultimately, utilizing prebiotics as an intervention to improve
health and reduce risk of disease is the goal. The approach that is the
most effective are those that rely on prevention and recognition that
life strategies adopted in early in life, which, when maintained, will
promote a viably diverse and durable microbiota that will promote
greatest potential to benefit the health of the host.

6.2. Probiotics

Probiotics are preparations of live or attenuated microorganisms,
such as bacteria or yeast, which may afford certain health benefits
when consumed. Several different probiotic preparations are com-
mercially available and differ from one manufacturer to another in a
number of ways, including bacterial composition, number of organ-
isms, and biological activity. Many health benefits are attributed to
probiotics, such as improving or supporting immunity, competitively
inhibiting noncommensal bacteria growth and providing many of the
essential vitamins and cofactors necessary for human health, that are
not endogenously produced by the host [137–140].

Various food preparations, such as yogurt and some fermented
foods, are natural sources of probiotics. Pu et al. conducted a clinical
trial to evaluate the efficacy of yogurt containing Lactobacillus
paracasei strain N1115, to prevent acute infection in elderly subjects
and observed a significant benefit, potentially through an enhance-
ment of the T-cell-mediated natural immune defense [141]. Indeed,
N1115 is reported to exhibit substantial resistance to acid and bile
stresses and also stimulates macrophages to produce IL-10, IL-6, and
TNF-α [142]. Bercik and coworkers reported that mice infected with
the nematode parasite Trichurismuris, displayed anxiety-like behavior
which correlated with decreased level of BDNF. However, upon
treatment with the common probiotic Bifidobacterium longum, the
anxiety-like behavior was reversed and BDNF levels were normalized
[21]. Also, Messaoudi et al. evaluated the efficacy of a probiotic
formulation containing Lactobacillus helveticus R0052 and Bifidobac-
terium longum R0175, to reduce anxiety in rats and also its possible
effects on anxiety, depression, stress and coping strategies in healthy
human volunteers [143]. The authors of that study concluded that the
probiotic formulation exhibited anxiolytic-like activity in rats and
provided beneficial psychological effects in healthy human subjects.

An increasing number of studies support the notion that probiotics
have significant benefit in maintaining homeostasis of the CNS.
However, most of these studies are based on indirect evidence. In an
effort to reveal the biological underpinnings of the gut-brain axis,
researchers in the laboratory of John Cryan, show that protracted
treatment of micewith the lactic acid bacteria Lactobacillus rhamnosus
induced alterations in the mRNA which codes for the GABA B1b
subunit in specific regions in the brain [20]. They additionally showed
that the probiotic reduced stress-induced corticosterone and anxiety-
and depression-related behavior. Importantly, the neurochemical and
behavioral effects were not observed in mice upon vagotomy,
unequivocally showing a role for bacteria in the bidirectional
communication between the gut and the brain via the vagus nerve.

The term psychobiotics, initially coined by Dinan et al. is typically
defined as any live organism that, when ingested in adequate
amounts, produces a health benefit in patients suffering from
psychiatric illness [144]. Accordingly, psychobiotics are, by definition,
a subgroup of probiotics with the added emphasis on mental illness.
Most psychobiotics are capable of producing or promoting the
endogenous synthesis of neurotransmitters such GABA, catechol-
amines, and 5-HT, all of which influence the brain-gut axis andmental
health. A list of biogenic amines implicated in neuroimmune disease
pathology as well as the microbes that associate with changes in the
respective neurotransmitter are given in Table 1.

As early as 2005, Logan andKatzmanproposed the use of probiotics
for the treatment of major depressive disorders [197]. Later studies,
using animal models, supported the notion that certain psychobiotics
possess antidepressant or anxiolytic properties. For instance, Barrett et
al. reported that specific strains of Lactobacillus and Bifidobacterium
produce GABA [167], the principal inhibitory neurotransmitter in the
brain and which plays an essential role in anxiety and depression
[198,199]. In addition to producing and promoting the production of
neuroactive substance, psychobiotics also can act on the brain through
epigenetic modulation [26], by reducing inflammation [200,201], and
by influencing the body’s stress response via the hypothalamic-
pituitary-adrenal (HPA) axis [202]. It should be noted that some
prebiotics support the growth of psychobiotics and for this reason,
some researchers have suggested that these prebiotics be classified as
psychobiotics [203].

7. Fatty acids and polyphenols

7.1. Short chain and omega-3 fatty acids

Short-chain fatty acids are the end-products of fermentation of
nondigestible carbohydrates by intestinal microbiota and have anti-
inflammatory and histone deacetylase-inhibiting properties [204]. As
they are critical for homeostasis of the GI tract, they also represent
important players in the gut-microbiota-brain axis. The three principal
SCFAs produced by the intestinal microbiota, acetate, propionate, and
butyrate are important for colonic health and have been implicated in
protection against colitis and colorectal cancer [205–208]. Although all
three are taken up by the colonic mucosa, previous studies suggest



Table 1
Biogenic amines implicated in neuroimmune disease pathology and microbes that associate with changes in the respective biogenic amines

Neurotransmitter Function Neuroimmune disease association Microbe family or genus implicated* Reference

Brain-derived
neurotrophic
factor (BDNF)

Neurotrophin

Alzheimer’s disease
Autism
Multiple sclerosis
Myalgic encephalomyelitis
Parkinson’s disease
Schizophrenia

Bifidobacterium breve, Bifidobacterium longum [21,145–152]

Dopamine
Neurotransmitter, precursor
of epinephrine and
norepinephrine

Alzheimer’s disease
Autism
Multiple sclerosis
Myalgic encephalomyelitis
Parkinson’s disease
Schizophrenia

Bacillus cereus and Serratia [153–161]

Gamma-aminobutyric
acid (GABA)

Inhibitory neurotransmitter

Alzheimer’s disease
Autism
Multiple sclerosis
Schizophrenia

Bifidobacterium dentium, Lactobacillus rhamnosus,
Escherichia coli, Pseudomonas

[162–167]

Glutamate Excitatory neurotransmitter

Alzheimer’s disease
Autism
Myalgic encephalomyelitis
Schizophrenia

Lactobacillus plantarum, Bifidobacteria, Lactobacilli [147,166,168–171]

Histamine
Neurotransmitter,
regulates physiologic
function in the gut

Alzheimer’s disease
Parkinson’s disease
Schizophrenia

Lactobacillus vaginalis, Morganella morganii [172]

Melatonin
Hormone, regulates
synchronization of the
circadian rhythm

Alzheimer’s disease
Autism
Myalgic encephalomyelitis
Multiple sclerosis
Parkinson’s disease
Schizophrenia

Bifidobacteria
Firmicutes
Verrucomicrobia
Enterobacter aerogenes,
Escherichia coli

[40,173–181]

Norepinephrine Hormone and neurotransmitter

Alzheimer’s disease
Autism
Myalgic encephalomyelitis
Multiple sclerosis
Parkinson’s disease
Schizophrenia

Escherichia, Bacillus, Saccharomyces [182–187]

Serotonin (5-HT) Monoamine neurotransmitter

Alzheimer’s disease
Autism
Multiple sclerosis
Myalgic encephalomyelitis
Parkinson’s disease
Schizophrenia

Candida, Streptococcus, Escherichia coli, Enterococcus,
L. bolteae, L. hathewayi, F. plautii, Lactobacillus
Plantarum, Lactococcus lactis subsp. Cremoris,
L. lactis subsp. Lactis, Streptococcus thermophiles,
Morganella morganii, Hafnia alvei

[188–196]

Note* The listed microbes are reported to influence the production of the respective neurotransmitters implicated in neuroimmune disease but are not necessary implicated in the
referenced neuroimmune disease directly.
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that butyrate is transported preferentially and appears to be the
preferred energy source for colonocytes [209,210]. The production of
propionate is primarily restricted to anaerobic bacteria family of
Clostridiales; however, the bacteria responsible for the production of
the other principal SCFAs are more broadly distributed [211]. In
addition to the production of SCFAs through anaerobic formation in
the gut, a significant amount is found in dairy products such as whole
milk and cheese [212].

Given that SCFAs are necessary for proper intestinal function and
are primarily made by intestinal bacteria, perturbations in the gut
microbiota may have profound effects on the gut-microbiota-brain
axis. As previously articulated, several neurological disorders are
characterized by intestinal comorbidity. An altered mucosal immune
environment may lead to changes in the microbiota, therefore, it is
reasonable to assume that restoring homeostasis of the mucosal
immune system may be a first step in establishing and maintaining a
healthy microbiota profile. Accordingly, introduction of SCFAs may
represent one method of indirectly modifying the microbiota, and in
turn the gut-microbiota-brain axis. To the best of our knowledge, no
previous human clinical trials have been conducted to assess the
benefit of SCFA supplementation in the treatment of neurodegener-
ative or neuroimmune disorders. Albeit, because of their histone
deacetylase-inhibiting properties, it has been suggested that theymay
be of benefit in treating disease such as Huntington's disease,
Parkinson's disease and amyotrophic lateral sclerosis [213].

In addition to the benefits imparted by SCFAs, several studies have
reported that omega-3 polyunsaturated fatty acids (n-3-PUFAs),
primarily eicosapentaenoic acid (EPA) and docosahexaenoic acid
(DHA), may improve or prevent some neurological and neuroimmune
disorders. For instance, Jiang et al. reported that supplementationwith
DHA enhanced serotoninergic and dopaminergic neurotransmission,
and decreases the levels of several hypothalamic–pituitary adrenal
hormones in mice, suggesting that DHAmay be efficacious in treating
depression [214]. Also, a number of clinical studies have shown n-3-
PUFA treatments to benefit subjects with AD [215–218]. While the
exact mechanisms underlying such effects are a matter of ongoing
investigations, previous studies show that n-3-PUFAs are required for
normal neuronal function. In fact, postmortem AD brain biopsies have
been shown to exhibit lower DHA levels. Yassine and coworkers
reported that the AD risk allele apolipoprotein ɛ4 (APOE ɛ4) and lower
CSF Aβ42 levels were associated with decreased transport of DHA to
cerebrospinal fluid and concluded that brain amyloid pathology may
limit the transport of DHA to the brain [219].

Recently,Watson et al. conducted a randomized trial to investigate
the effect of n-3-PUFA supplements on the human intestinal
microbiota and observed that supplementation induces a reversible
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increase in several SCFA-producing bacteria, including Bifidobacter-
ium, Roseburia and Lactobacillus [220]. These observations suggest
that n-3-PUFA supplementation may represent an effective way to
modify the productions of SCFAs, and in turn, improve GI homeostasis.
Consistent with this, Ramos-Romero et al. reported that supplemen-
tation with n-3-PUFA modified the populations of Lactobacillus, Bifi-
dobacterium and SCFAs in rats [221]; and Pusceddu and colleagues
showed EPA and DHA supplementation alters the gut microbiota
composition of both neurodevelopmentally normal and early-life
stressed Sprague-Dawley female rats [222]. AlthoughDHAandEPA are
available commercially as purified supplements, they are present in
high quantities in fish, especially cold-water fatty fish, such as salmon,
mackerel, tuna, herring, and sardines

7.2. Polyphenols

Polyphenols are large organic molecules that contain at least one
hydroxyl group attached to the carbon atom of an aromatic ring. They
are naturally occurring in many plants and fruit and are largely
responsible for their brilliant color. Seasonings are probably the
highest sources of polyphenols, followed by seeds, vegetables, and
fruits. Polyphenols are classified according to their structure as either
flavonoids or non-flavonoids with the non-flavonoids being further
subclassified as either phenolic acids, stilbenes, or lignans. They have
been the focus of a significant body of research for their protective
effects against cancer, cardiovascular disease, diabetes, and Alzhei-
mer’s disease, as well as for their antiaging properties [223–226].

Several polyphenolics are found in green and black tea, and many
excellent reviews are available that address the putative health
benefits of tea-derived polyphenolics [227–230]. Although research
that addresses their influence on the microbiome is less developed
than that for other health benefits, previous studies do support the
premise that these molecules have the capacity to influence the
microbiota. For instance, Ankolekar et al. investigated nine tea extracts
and concluded that gallic acid, quercetin, and tea catechins (including
catechin, epicatechin, and epigallocatechin) have the capacity to
inhibit H. pylori without affecting the beneficial lactic acid bacteria
[231]. Additionally,Wang et al. reported that mice infectedwith E. coli
O157:H7, displayed improve immune function and increased micro-
biota diversity upon treatment of mice with fuzhuan brick-tea extract
[232]. However, Janssens and colleagues reported that long-term
green tea supplementation does not change the human gut micro-
biome profile [233]. These studies suggest that tea-derived polyphe-
nolicsmay impact pathogenic bacteriawithout altering the normal gut
flora; however, further studies will be required with purified
polyphenolics in order to make definitive determinations.

Redwine, is also a significant source of polyphenols that have been
shown to influence the intestinal microflora, as well as oxidative
damage and gene expression profiles of colonic mucosa. For instance,
Rodrıguez Vaquero and coworkers showed that polyphenols of
different wines have antibacterial properties with E. coli being most
sensitive bacterium and Flavobacterium sp. showing the most
resistance [234]. Also, Dolara et al. reported that polyphenols from
red wine (50 mg/kg) inhibited colon cancer in a rat model [235]. They
further reported that the microbiome profile was shifted in
polyphenol-treated rats when compared to the control rats and that
the rats not treated with carcinogens, produced a significant decrease
in the basal level of DNA oxidative damage of the colon mucosa.
Finally, they observed that the transcription of genes involved in
inflammatory response and steroidmetabolismwere down-regulated
in colon mucosa of polyphenols-treated rats. While these studies
clearly underscore the potential benefits of polyphenols in modifying
and modulating the gut microbiota, most of these studies have been
carried out using animal models. Therefore, more human subject
studies will be required to fully appreciate their benefit.
8. Vitamins

8.1. Vitamin A

The microbiota utilizes dietary vitamins and minerals and,
accordingly, these micronutrients represents potential mechanisms
to modify the gut microbiota. For instance, vitamin A (vA) plays an
important role in neurological function as well as regulating the
central nervous system development [236,237]. Additionally, vA,
through its metabolite retinoic acid, is an important factor that
promotes intestinal immunity [238] andmaintains mucosal epithelial
integrity [239]. vA supplementation has been shown to be efficacious
for a number of disease characterized by altered microbiome profiles
and neuroimmune abnormalities. For instance, Liu et al. reported that
autistic children who received vA intervention displayed a significant
increase in Bacteroidetes/Bacteroidales and a decrease in Bifidobac-
terium [240]. Additionally, they reported that vA intervention results
in significant changes in autism-related biomarkers. Indeed, vA has
been shown to influence commensal GI bacterial profiles. For instance,
Lee and Ko reported that vA supplementation significantly increased
the GI levels of Lactobacillus sp. during norovirus infection, and was
associated with decreased viral load [241]. Finally, in a recent report,
Hibberd and coworkers utilized a humanizedmicrobiotamousemodel
to evaluate the effects of micronutrient deficiencies in humans
showed that acute vA deficiency led to the largest impact [242].

8.2. Vitamin D

Several neuroimmune and neuroinflammatory diseases character-
ized by putative microbiome alterations, such as multiple sclerosis,
autism and Alzheimer’s disease, have been associated with Vitamin D
(vD) deficiency [243–245]. For instance, Shen and Ji conducted ameta-
analysis of the existing literature and reported that subjects deficient
for 25-hydroxyvitamin D (b 50 nmol/L) were at increased risk of
developing AD by 21 % compared with those with vD levels greater
than 50 nmol/L [245]. As an additional example, Mostafa and AL-
Ayadhi evaluated serum 25-hydroxyvitamin D levels in 50 autistic
children and 30 healthy-matched controls and determined that the
autistic childrenhad significantly lower levels thanhealthy children (P
b 0.001) with 40% and 48% being vitamin D deficient and insufficient,
respectively [246]. While direct evidence for the efficacy of vD in
altering the microbiota in neuroimmune and neuroinflammatory
diseases is limited, a substantial body of evidence supports its role in
maintaining GI homeostasis, and potentially the microbiota, by
regulating mucosal inflammatory responses [247], modulating pat-
tern recognition receptors [248] and maintaining intestinal barrier
function [249,250].

The potential benefits of using vD to modulate the microbiota in
the context of neuroimmune and neuroinflammatory disease is
supported by indirect evidence. For instance, NOD2 (nucleotide-
binding oligomerization domain 2), which recognizes bacterial-
derived LPS, has been reported as susceptibility gene contributing to
the development of Crohn’s disease (CD) [251]. Dionne and coworkers
showed that when monocyte-derived dendritic cells isolated from
subjects with CD are treated with the hormonal form of vD, 1,25-
dihydroxy vitamin D (1,25D) a decrease in Toll-like receptor (TLR)-
induced cytokine production is observed as well as NOD2-associated
NF-kappa-B activation [248]. Additionally, previous studies have
shown that 1,25D induces the transcription of genes that encode
antimicrobial peptides [252]. Earlier studies showed that the pro-
moters of the human cathelicidin antimicrobial peptide and defensin
beta2 genes contain consensus vD response elements that mediate
1,25D-dependent gene expression [253].

Recently, Wang et al. conducted genome-wide association study
(GWAS) to investigate potential genetic contributions to variations in
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the gut microbiota and identified polymorphisms in the vD receptor
(VDR) as a significant contributing factor [254]. Although these
observations may suggest that vD may play a role in disease
characterized by alterations in the microbiota, future studies will be
required to determine if supplementing vD as a means to treat these
diseases is efficacious.

Although vD is typically supplemented as 25-hydroxyvitamin D,
1,25D is primarily the biologically active form [255]. It is largely
formed in the kidneys but is also generated locally bymany other body
tissues. It is noteworthy that Bora et al. recently shown that germ-free
mice are deficient 1,25-hydroxyvitamin D [256], suggesting that not
only can vD modulate the gut microbiota, a healthy microbiome is
likely necessary for vD homeostasis.

8.3. B Vitamins

In humans, B vitamins are acquired through diet or from the gut
microbiota and their deficiencies are often found in patients with
intestinal malabsorption [257–259]. Additionally, B vitamin deficien-
cies lead to deleterious neurological effects including polyneuropathy,
diabetic polyneuropathy, optic atrophy, myelopathy and cerebellar
ataxia [260,261]. Recent studies have shown that the ability of the
microbiota to synthesize B vitamins increases as the microbial
community of the gut matures early in life [262].

Vitamin B12 is made in significant quantities by commensal
bacteria in the large intestine; however, the necessary transport
receptors in humans are primarily in the small intestine suggesting
that the B12 produced by the microbiota are primarily consumed by
the microbiota [263]. Accordingly, B12 supplementation may repre-
sent an effective way to modulate the gut microbiota, particularly in
the small intestine [264].

9. Conclusions

Over the last decade, it has becomeevident that theGImicrobiota is
a key regulator of the gut-brain axis and several lines of well-accepted
evidence support the premise that it influences human health and
disease. Stress-related behaviors, including those relevant to anxiety
and depression as well as neuroinflammatory and neuroimmune
disease have all been implicated in dysregulation of the GI microbiota.
Additionally, if we acknowledge that an altered microbiota may
contribute the development of disease, we must also acknowledge
that some dietary factors may change the microbiota in a way that
negatively impacts human health. Indeed, previous studies have
shown that artificial sweeteners, when given to laboratory animals,
raise blood sugar levels potentially leading to insulin resistance
[265–267]. Moreover, this observation is directly linked to changes in
the microbiota in that non-absorbable antibiotics can reverse this
observation. Additionally, several studies have shown that a high fat
diet is associated with a decrease in butyrate-producing bacteria, and
increased gastrointestinal inflammation [268,269].

Numerous studies have now identified alterations in the gut
microbiota in a wide range of neuroimmune diseases, although, in most
instances, it has yet to be determined if the aberrant microbiota
contributes to the disease or is a result of the disease [88,270–273]. As
evidence mounts connecting the gut microbiota to neuroimmune and
neuroinflammatorydisease, thepossibility for altering themicrobiota as a
treatment strategy is a logical progression in an age of translational
medicine.
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